Tetrahedron 65 (2009) 8524-8530

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

A simple and convenient approach to the Friedländer synthesis of pyrano[2,3-*b*]pyridines

Nagarajan Panneer Selvam, Thelagathoti Hari Babu, Paramasivan T. Perumal*

Organic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, Tamilnadu, India

ARTICLE INFO

Article history: Received 17 April 2009 Received in revised form 25 July 2009 Accepted 7 August 2009 Available online 13 August 2009

ABSTRACT

 $SnCl_2 \cdot 2H_2O$ mediated efficient synthesis of pyrano[2,3-*b*]pyridines was achieved by the Friedländer reaction of 2-amino-3-cyano-4*H*-pyrans with cyclopentanone/cyclohexanone under solvent-free condition.

© 2009 Elsevier Ltd. All rights reserved.

Tetrahedror

1. Introduction

The presence of pyranopyridine scaffold in the frame work of several biologically active naturally occurring alkaloids of plant origin¹ has enthused researchers to synthesize and study their potential biological activities. They are known to possess anti-allergic, anti-inflammatory, and estrogenic properties.² In addition, benzopyrano[2,3-*b*]pyridines exhibit anti-proliferative,³ cancer chemopreventive,⁴ anti-bacterial (including anti-tubercular),⁵ anti-myopic,⁶ anti-histamic,⁷ hypotensive,⁸ anti-rheumatic,⁹ and anti-asthmatic activities.¹⁰

Despite numerous methods reported such as Skraup, Döbnervon Miller, and Combes,¹¹ the Friedländer annulation is the most simple and straightforward approach for the synthesis of polysubstituted pyridines and related azaheterocycles. Friedländer annulation is acid or base catalyzed annulation of *o*-aminoaryl ketones with carbonyl compounds containing a reactive α -methylene group. Among various Friedländer syntheses, cyclocondensation of *o*-aminobenzonitrile with various ketones has been less explored. Previous investigation^{12,13} on condensation of these derivatives required prolonged reaction times, use of hazardous reagents and limits the large scale application. In view of its immense biological applications, the development of simple and convenient protocol is of considerable interest.

Over the past few years, organic reactions under solvent-free conditions have gained much popularity.¹⁴ Solvent-free reactions are not only of interest from ecological point of view, but in many cases, also offer several synthetic advantages like higher yields, reduced pollution, low cost, improved selectivities, and simplicity in process and handling.¹⁵

Recently, $SnCl_2 \cdot 2H_2O^{16}$ has emerged both as the medium and catalyst in various organic transformations. In view of its inherent properties like reusability, greater selectivity, operational simplicity, non-corrosiveness, low cost, and ease of isolation, various synthetic transformations were accomplished. Previously, our group demonstrated the utility of $SnCl_2 \cdot 2H_2O$ as an alternative to ionic liquid^{17d} and employed it as a reaction medium for carrying out various organic transformations. As part of our current studies on the design of new routes for the preparation of biologically active heterocyclic compounds,¹⁷ we herein disclose a simple and convenient method for the synthesis of pyrano[2,3-*b*]pyridines by Friedländer reaction mediated by $SnCl_2 \cdot 2H_2O$ under solvent-free condition (Scheme 1).

2. Results and discussion

In our initial endeavor, we investigated the reaction of **1a** with cyclohexanone **2a** using various Lewis acid catalysts in different solvents (methanol, ethanol, and 1,2-dichloroethane) and neat at reflux or at 100 °C (Scheme 2 and Table 1). After systematic screening, we observed that tinchloride dihydrate gave moderate yield under solvent-free condition with equimolar amount of catalyst at 100 °C. Then, we optimized the reaction condition by increasing/decreasing the catalyst loading and temperature. The best result was obtained when the reaction was carried out with SnCl₂·2H₂O (also serving as reaction medium) under solvent-free condition at 110 °C.

^{*} Corresponding author. Tel.: +91 44 24911386; fax:+91 44 24911589. *E-mail address*: ptperumal@gmail.com (P.T. Perumal).

^{0040-4020/\$ –} see front matter \circledcirc 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.08.025

improve the product yield or increase the reaction rate. We also studied the recyclability of $SnCl_2 \cdot 2H_2O$ as reaction medium. $SnCl_2 \cdot 2H_2O$ is insoluble in dichloromethane. This property was utilized in recycling the reaction medium. Since $SnCl_2 \cdot 2H_2O$ is insoluble in dichloromethane, it was used to bring out the organic part from the reaction mixture. Thus, dichloromethane leaves the $SnCl_2 \cdot 2H_2O$ in reaction vessel, which was recycled for further reactions (three times). The yield did not vary much while recycling the reaction medium and the yields were found to be 56, 55, and 53, respectively.

Table 1

Catalyst and solvent screening	Catalyst	and	solvent	screenin
--------------------------------	----------	-----	---------	----------

Entry	Catalyst	Yield ^a (%)			
		MeOH	EtOH	DCE	Neat
1	InCl ₃	_	_	5	_
2	In(OTf) ₃	—	—	8	_
3	SnCl ₂ .2H ₂ O	—	—	45	54
4	NH_2SO_3H	—	—	_	Trace
5	CAN	_	_	_	—
6	BiCl ₃	_	—	5	10
7	Bi(OTf) ₃	—	—	10	12
8	FeCl ₃	_	-	6	12

^a All reactions were performed with 100 mol % catalyst at reflux or 100 °C for 5 h.

Table 2 summarizes our results on the Friedländer reaction of various 2-amino-3-cyano-4*H*-pyrans¹⁸ with cyclohexanone/cyclopentanone under optimized condition (Scheme 3). The reaction was amenable to wide variations in 2-amino-3-cyano-4*H*-pyrans and afforded the corresponding highly substituted pyranopyridines **3a–I** in moderate yields.

The structures of all products **3a–1** were confirmed by IR, ¹H NMR, ¹³C NMR, mass, and elemental analysis. In the IR spectrum of **3a**, disappearance of –CN group and a peak at 1638 cm⁻¹ (–C=N–) confirmed the formation of pyridine ring. Absorptions at 3435, 3349, and 1209 cm⁻¹ indicated the presence of –NH₂ and –C–O–C-groups, respectively. Signals at δ 150.2 (–C=N), 154.2 (–C–NH₂), 22.3–32.4 (–CH₂ groups) in the ¹³C NMR spectrum confirmed that cyclohexanone reacted with –NH₂ and –CN of 2-amino-3-cyano-4*H*-pyran. The ¹H NMR spectrum of **3a** displayed signals at δ 1.76, 2.20, and 2.71 (–CH₂ protons of cyclohexyl ring) and 4.03 (–NH₂ protons, D₂O exchangeable). Mass analysis also supported the structural assignment.

To further explore the potential of this protocol, we investigated the reaction of 2-amino-3-cyano chromenes with cyclohexanone/ cyclopentanone and obtained the corresponding naphthopyranopyridines **5a–e** in moderate yields (Scheme 4 and Table 3).

The structures of all products **5a–e** were confirmed by IR, ¹H NMR, ¹³C NMR, mass, and elemental analysis. The IR spectrum of **5e** showed absorptions at 3483, 3397, and 1109 cm⁻¹ indicating the presence of $-NH_2$ and -C-O-C-groups, respectively. Disappearance of -CN group and a peak at 1628 cm⁻¹ (-C=N-) confirmed the formation of pyridine ring. In the ¹H NMR spectrum, $-NH_2$ protons appeared as a broad singlet at δ 4.19 (D₂O exchangeable) and the methylene protons ($-CH_2$) of cyclohexyl ring were seen as

multiplets at δ 1.72, 2.26, and 2.83. Signals at δ 154.2 (-C=N), 160.4 (-C-NH₂), 22.3-32.4 (-CH₂ groups) in the ¹³C NMR spectrum confirmed that cyclohexanone reacted with -NH₂ and -CN of pyran. Mass analysis also supported the structural assignment.

A mechanistic rationalization for the reaction is given in Scheme 5.

3. Conclusion

In summary, we have developed a simple and convenient method for the synthesis of highly substituted pyranopyridines from 2-amino-3-cyano-4*H*-pyrans and cyclohexanone/cyclopentanone using inexpensive and commercially available $SnCl_2 \cdot 2H_2O$ under solvent-free condition. The major advantage of this protocol is that $SnCl_2 \cdot 2H_2O$ (as reaction medium) can be recycled upto three times without much change in yield. The generality of the reaction was also extended to the synthesis of naphthopyranopyridines in moderate yields.

4. Experimental

4.1. Materials and methods

SnCl₂·2H₂O, NH₂SO₃H, CAN, and FeCl₃ were obtained from S.D. Fine Chem. Ltd. Bi(OTf)₃, In(OTf)₃, InCl₃, and BiCl₃ were purchased from Aldrich and used as received. All melting points were uncorrected. IR spectra were recorded on a Perkin Elmer FT-IR spectrophotometer. ¹H and ¹³C NMR spectra were recorded in CDCl₃ using TMS as an internal standard on JEOL spectrometer at 500 MHz and 125 MHz and Bruker spectrometer at 300 MHz and 75 MHz, respectively. Mass spectra were recorded by electrospray ionization method on Thermo Finnegan Mass spectrometer. Elemental analyses were recorded using a Thermo Finnegan FLASH EA 1112 CHN analyzer. Column chromatography was performed on silica gel (100–200 mesh, SRL, India). Analytical TLC was performed on precoated plastic sheets of silica gel G/UV-254 of 0.2 mm thickness (Macherey-Nagel, Germany).

4.2. General procedure for the synthesis of pyranopyridines

To a two-neck round-bottomed flask fitted with a mechanical stirrer and oil bath, 2 g of SnCl₂ · 2H₂O was added and stirred at 50 °C. SnCl₂·2H₂O became viscous liquid. To this viscous liquid, 2-amino-3-cyano-4*H*-pyran **1** (1 mmol) and cyclohexanone **2a** (1.1 mmol) were added and stirred at same temperature for about 15 min. Then stirring was continued at 110 °C until the disappearance of starting materials, as indicated by TLC. After the completion of the reaction, the reaction mixture was allowed to cool to 40 °C and triturated with dichloromethane (3×15 mL) and stirred for 10 min. The organic laver thus obtained was washed twice with water and with saturated sodium chloride solution. dried over anhydrous Na₂SO₄. and concentrated under reduced pressure. The crude product was purified through column chromatography (40% ethyl acetate in petroleum ether). The round-bottom flask, which contains the SnCl₂·2H₂O was again utilized for recycling the reaction medium (successfully recycled three times). The same procedure was followed for the synthesis of naphthopyranopyridines **5a–e**.

4.2.1. Ethyl 5-amino-4-(4-chlorophenyl)-2-methyl-6,7,8,9-tetrahydro-4H-pyrano[2,3-b]quinoline-3-carboxylate (**3a**). Off white solid; mp 138–140 °C; R_f 0.65 (40% EtOAc/petroleum ether); IR ν_{max} (KBr): 3435, 3349, 2928, 1685, 1638, 1571, 1447, 1295, 1209, 1057, 833 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 1.22 (t, 3H, *J*=6.9 Hz, -OCH₂CH₃), 1.76 (m, 4H, -CH₂), 2.20 (m, 2H, -CH₂), 2.42 (s, 3H, -CH₃), 2.71 (m, 2H, -CH₂), 4.03 (br s, 2H, D₂O exchangeable, -NH₂), 4.09 (m, 2H, -OCH₂CH₃), 4.80 (s, 1H, -CH), 7.18 (m, 4H, -Ar-H); ¹³C NMR (125 MHz, CDCl₃) δ : 14.2, 19.8, 22.3, 22.5, 22.9, 32.4, 37.9, 60.4, 99.2,

Table 2 Synthesis of pyrano[2,3-*b*]pyridines **3a-l**

Entry	2-Amino-3-cyano-4H-pyrans (1)	Cyclic ketone (2)	Product (3) ^a	Time (h)	Yield ^b (%)
1	$H_{3}C \longrightarrow CN$ $CH_{3} \longrightarrow NH_{2}$ $1a$	O J 2a	$H_{3}C O H_{3}O N H_{2}$	4.5	58
2	$H_{3}C O + CN CN CH_{3} O NH_{2}$ Ib	O J Za	$H_{3}C O H_{3}O H_{3}$	4.5	60
3	H_3C CN CH_3 O NH_2 CR	O J 2a	$H_{3}C_{0}$ CH_{3} CH_{3} CH_{3} R	4.2	64
4	CH_3 CH_3 CH_3 CH_3 CH_3 CH_2 CN CH_3 CH_2 $1d$	Q 2a	$CH_{3} O H_{2} O CH_{3} O H_{2} O H_{3} O H_$	4.5	64
5	H_3C Cl Cl Cl Cl Cl Cl Cl C	Q 2a	$ \begin{array}{c} CI\\ CI\\ NH_2\\ H_3C\\ CH_3\\ O\\ N \end{array} $	4.5	62
6	CH_{3} CH_{3} CH_{3} CH_{3} CH_{3} H_{2} H_{2}	2a	$ \begin{array}{c} $	4.2	60
7	$ \begin{array}{c} $	O J 2a		4.0	65

 Table 2 (continued)

106.4, 113.7, 128.7, 129.8, 132.8, 142.4, 150.2, 154.2, 154.3, 160.1, 166.7; MS (ESI LCQ-MS): m/z 399 [M+1]⁺. Anal. Calcd for C₂₂H₂₃N₂O₃Cl: C, 66.24; H, 5.81; N, 7.02%. Found: C, 66.41; H, 5.77; N, 7.04%.

4.2.2. Ethyl 5-amino-2-methyl-4-(3-nitrophenyl)-6,7,8,9-tetrahydro-4H-pyrano[2,3-b]quinoline-3-carboxylate (**3b**). Off white solid; mp

204–206 °C; R_f 0.57 (40% EtOAc/petroleum ether); IR ν_{max} (KBr): 3438, 3340, 2932, 1686, 1642, 1529, 1353, 1230, 1065, 801, 685 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 1.24 (t, 3H, *J*=7.7 Hz, –OCH₂CH₃), 1.78 (m, 4H, –CH₂), 2.33 (m, 2H, –CH₂), 2.46 (s, 3H, –CH₃), 2.74 (m, 2H, –CH₂), 4.11 (br s, 2H, D₂O exchangeable, –NH₂), 4.12 (m, 2H, –OCH₂CH₃), 4.95 (s, 1H, –CH), 7.42 (t, 1H, *J*=8.4 Hz, –Ar–

Table 3

Synthesis of naphthopyranopyridines 5a-e

2-Amino-3-cyano chromenes (4)	Cyclic ketone (2)	Product (5) ^a	Time (h)	Yield ^b (%)
NO ₂ CN CN NH ₂ 4a	O J 2a	$ \begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	3.5	62
	O D 2b	Cl NH ₂ ON 5b	4.0	60
	2b		3.0	64
H H H H H H H H H H H H H H H H H H H	O J 2a	$ \begin{array}{c} & & \\ $	4.0	60
	0 2a	CI NH ₂	4.0	60
	2-Amino-3-cyano chromenes (4) $ \begin{aligned} \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\ 4a \\ \downarrow \downarrow \downarrow \downarrow \downarrow \\ 4a \\ \downarrow \downarrow \downarrow \downarrow \downarrow \\ 4b \\ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\ 4b \\ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\ 4c \\ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\ 4c \\ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\ 4c \\ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\ 4c \\ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\ 4c \\ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\ 4c \\ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\ 4c \\ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\ 4c \\ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\ 4c \\ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\ 4c \\ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\ 4c \\ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\ 4d \\ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\ 4d \\ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\ 4d $	2-Amino-3-cyano chromenes (4) Cyclic ketone (2) $\begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ 4a \end{array} \qquad \begin{array}{c} 0 \\ \downarrow \\ 2a \end{array} \qquad \begin{array}{c} 0 \\ \downarrow \\ 2a \end{array} \qquad \begin{array}{c} 0 \\ \downarrow \\ 2a \end{array} \qquad \begin{array}{c} 0 \\ \downarrow \\ 2b \end{array} \qquad \begin{array}{c} 0 \\ \downarrow \\ 1 \end{array} \qquad \begin{array}{c} 0 \\ \downarrow \\ 2b \end{array} \qquad \begin{array}{c} 0 \\ \downarrow \\ 1 \end{array} \qquad \begin{array}{c} 0 \\ \downarrow \\ 2b \end{array} \qquad \begin{array}{c} 0 \\ \downarrow \\ 1 \end{array} \qquad \begin{array}{c} 0 \\ \end{array} \end{array} \qquad \begin{array}{c} 0 \\ 1 \end{array} \qquad \begin{array}{c} 0 \\ \end{array} \end{array} \qquad \begin{array}{c} 0 \\ \end{array} \qquad \begin{array}{c} 0 \\ \end{array} \end{array} \end{array} \qquad \begin{array}{c} 0 \\ \end{array} \end{array} \end{array} $ \qquad \begin{array}{c} 0 \\ \end{array} \end{array} \end{array}	2-Amino-3-cyano chromenes (4) Cyclic ketone (2) Product (5) ⁴ $ \begin{array}{cccc} & & & & & & & & & & & & & & & & & $	2.4 mino-3-cyano chromenes (4) Cyclic ketone (2) Product (5) ⁴ Time (b) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$

^a All products were characterized by IR, ¹H NMR, ¹³C NMR, mass spectral, and elemental analysis. ^b Isolated yield.

Scheme 5.

H), 7.58 (d, 1H, J=7.7 Hz, -Ar-H), 8.03 (d, 1H, J=8.4 Hz, -Ar-H), 8.19 (s, 1H, -Ar-H); ¹³C NMR (125 MHz, CDCl₃) δ : 14.3, 17.6, 23.7, 32.5, 34.7, 60.8, 98.4, 105.8, 114.0, 121.7, 122.9, 123.9, 129.4, 137.6, 146.1, 148.2, 150.1, 154.3, 154.8, 161.3, 166.5; MS (ESI LCQ-MS): m/z 410 [M+1]⁺. Anal. Calcd for C₂₂H₂₃N₃O₅: C, 64.54; H, 5.66; N, 10.26%. Found: C, 64.63; H, 5.69; N, 10.24%.

4.2.3. Methyl 5-amino-4-(3-fluorophenyl)-2-methyl-6,7,8,9-tetrahydro-4H-pyrano[2,3-b]quinoline-3-carboxylate (3c). Yellow solid; mp 222–224 °C; R_f 0.61 (40% EtOAc/petroleum ether); IR ν_{max} (KBr): 3453, 3372, 2932, 1692, 1643, 1446, 1380, 1295, 1234, 1064, 774 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ: 1.63 (m, 4H, -CH₂), 2.34 (m, 2H, -CH₂), 2.44 (s, 3H, -CH₃), 2.74 (m, 2H, -CH₂), 3.75 (s, 3H, -OCH₃), 4.02 (s, 2H, D₂O exchangeable, NH₂), 4.85 (s, 1H, -CH), 6.88 (t, 1H, *J*=8.4 Hz, -Ar-H), 6.97 (d, 1H, *J*=9.2 Hz, -Ar-H), 7.08 (d, 1H, *J*=6.9 Hz, -Ar-H), 7.19 (s, 1H, -Ar-H); ¹³C NMR (75 MHz, CDCl₃) δ : 19.8, 22.3, 22.5, 22.9, 29.7, 32.4, 38.2, 51.4, 99.0, 106.1, 113.7, 114.1, 115.3, 123.9, 130.1, 146.5, 150.3, 154.2, 160.4 (*J*_{C-F}=240.2 Hz), 163.8, 167.2; MS (ESI LCQ-MS): *m*/*z* 369 [M+1]⁺. Anal. Calcd for C₂₁H₂₁N₂O₃F: C, 68.46; H, 5.75; N, 7.60%. Found: C, 68.62; H, 5.80; N, 7.67%.

4.2.4. Isopropyl 5-amino-4-(4-chlorophenyl)-2-methyl-6,7,8,9-tetrahydro-4H-pyrano[2,3-b]quinoline-3-carboxylate (**3d**). Pale brown solid; mp 130–132 °C; R_f 0.52 (40% EtOAc/petroleum ether); IR ν_{max} (KBr): 3441, 3365, 2928, 1689, 1642, 1452, 1371, 1297, 1211, 1098, 1060, 834 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 1.16 (d, 3H, *J*=6.1 Hz, -CH₃), 1.22 (d, 3H, *J*=6.1 Hz, -CH₃), 1.76 (m, 4H, -CH₂), 2.29 (m, 2H, -CH₂), 2.41 (s, 3H, -CH₃), 2.71 (m, 2H, -CH₂), 4.03 (s, 2H, D₂O exchangeable, -NH₂), 4.78 (s, 1H, -CH), 4.97 (m, 1H, -OCH(CH₃)₂), 7.20 (s, 4H, -Ar-H); ¹³C NMR (75 MHz, CDCl₃) δ : 18.3, 22.4, 22.6, 22.9, 32.5, 37.5, 99.3, 106.6, 113.8, 128.3, 129.1, 129.5, 132.9, 142.4, 150.3, 154.3, 159.3, 166.3; MS (ESI LCQ-MS): m/z 412 [M+1]⁺. Anal. Calcd for C₂₃H₂₅N₂O₃Cl: C, 66.90; H, 6.10; N, 6.78%. Found: C, 67.12; H, 6.14; N, 6.81%.

4.2.5. Methyl 5-amino-4-(2,4-dichlorophenyl)-2-methyl-6,7,8,9-tetrahydro-4H-pyrano[2,3-b]quinoline-3-carboxylate (**3e**). Light brown solid; mp 222–224 °C; R_f 0.57 (40% EtOAc/petroleum ether); IR ν_{max} (KBr): 3483, 3396, 2934, 1713, 1642, 1451, 1397, 1224, 1064, 1099, 845, 655 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 1.65 (m, 2H, –CH₂), 1.83 (m, 2H, –CH₂), 2.31 (m, 2H, –CH₂), 2.48 (s, 3H, –CH₃), 2.69 (m, 2H, –CH₂), 3.63 (s, 3H, –OCH₃), 4.40 (s, 2H, D₂O exchangeable, –NH₂), 5.21 (s, 1H, –CH), 7.14 (m, 2H, –Ar–H), 7.29 (s, 1H, –Ar–H); ¹³C NMR (75 MHz, CDCl₃) δ : 22.4, 22.9, 32.0, 34.8, 50.8, 98.9, 105.8, 113.4, 129.2, 132.3, 140.7, 150.4, 154.1, 154.2, 161.7, 162.7, 167.0; MS (ESI LCQ-MS): m/z 419 [M+1]⁺. Anal. Calcd for C₂₁H₂₀N₂O₃Cl₂: C, 60.15; H, 4.81; N, 6.68%. Found: C, 60.28; H, 4.83; N, 6.71%.

4.2.6. 1-(5-Amino-2-methyl-4-(3-nitrophenyl)-6,7,8,9-tetrahydro-4H-pyrano[2,3-b]quinolin-3-yl)ethanone (**3f** $). Pale brown solid; mp 238–240 °C; <math>R_f$ 0.62 (40% EtOAc/petroleum ether); IR ν_{max} (KBr): 3433, 3357, 2925, 1706, 1631, 1528, 1351, 682 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 1.80 (m, 4H, –CH₂), 2.33 (m, 5H, –CH₃ and –CH₂), 2.49 (s, 3H, acetyl–CH₃), 2.75 (m, 2H, –CH₂), 4.10 (br s, 2H, D₂O exchangeable, –NH₂), 5.06 (s, 1H, –CH), 7.41 (t, 1H, *J*=7.7 Hz, –Ar–H), 7.63 (d, 1H, *J*=7.7 Hz, –Ar–H), 8.02 (d, 1H, *J*=8.4 Hz, –Ar–H), 8.15 (s, 1H, –Ar–H); ¹³C NMR (75 MHz, CDCl₃) δ : 18.3, 21.3, 22.8, 23.6, 32.3, 38.6, 110.4, 114.6, 115.3, 128.3, 130.1, 136.2, 139.4, 149.4, 153.4, 155.1, 156.3, 166.4, 198.6; MS (ESI LCQ-MS): *m/z* 380 [M+1]⁺. Anal. Calcd for C₂₁H₂₁N₃O₄: C, 66.48; H, 5.58; N, 11.08%. Found: C, 66.72; H, 5.61; N, 11.04%.

4.2.7. 11-*Amino*-12-(3-*nitrophenyl*)-3,4,7,8,9,10-*hexahydro*-2*H*-*chromeno*[2,3-*b*]*quino*lin-1(12*H*)-*one* (**3***g*). Pale yellow solid; mp 242–244 °C; *R*_f 0.50 (40% EtOAc/petroleum ether); IR *v*_{max} (KBr): 3468, 3365, 2931, 1631, 1530, 1351, 1192, 1076, 716 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 1.22 (m, 2H, –CH₂), 2.02 (m, 4H, –CH₂), 2.35 (m, 4H, –CH₂), 2.75 (m, 4H, –CH₂), 4.15 (s, 2H, D₂O exchangeable, –NH₂), 5.02 (s, 1H, –CH), 7.40 (t, 1H, *J*=7.7 Hz, –Ar–H), 7.69 (d, 1H, *J*=7.7 Hz, –Ar–H), 8.00 (d, 1H, *J*=6.9 Hz, –Ar–H), 8.17 (s, 1H, –Ar–H); ¹³C NMR (75 MHz, CDCl₃) δ : 20.2, 22.8, 32.3, 33.6, 34.9, 36.9, 98.6, 114.1, 121.6, 122.8, 124.1, 128.8, 135.4, 145.5, 148.5, 150.7, 154.2, 154.8, 167.4, 197.0; MS (ESI LCQ-MS): *m*/*z* 392 [M+1]⁺. Anal. Calcd for C₂₂H₂₁N₃O₄: C, 67.51; H, 5.41; N, 10.74%. Found: C, 67.64; H, 5.42; N, 10.78%.

4.2.8. 11-Amino-12-(4-nitrophenyl)-3,4,7,8,9,10-hexahydro-2Hchromeno[2,3-b]quinolin-1(12H)-one (**3h**). Off white solid; mp 242– 244 °C; R_f 0.52 (40% EtOAc/petroleum ether); IR ν_{max} (KBr): 3410, 3368, 2930, 1637, 1564, 1520, 1348, 1190, 1074 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 1.23 (m, 2H, -CH₂), 1.81 (m, 6H, -CH₂), 2.03 (m, 2H, $-CH_2$), 2.33 (m, 2H, $-CH_2$), 2.75 (m, 2H, $-CH_2$), 4.06 (s, 2H, D₂O exchangeable, $-NH_2$), 5.00 (s, 1H, -CH), 7.51 (d, 2H, *J*=8.4 Hz, -Ar-H), 8.09 (d, 2H, *J*=8.4 Hz, -Ar-H); ¹³C NMR (75 MHz, CDCl₃) δ : 21.4, 21.9, 22.4, 32.1, 33.9, 34.8, 34.9, 33.1, 52.7, 111.3, 113.8, 114.6, 123.8, 130.1, 144.1, 153.4, 154.3, 160.2, 164.3, 198.6; MS (ESI LCQ-MS): *m/z* 392 [M+1]⁺. Anal. Calcd for C₂₂H₂₁N₃O₄: C, 67.51; H, 5.41; N, 10.74%. Found: C, 67.83; H, 5.40; N, 10.69%.

4.2.9. 11-Amino-3,3-dimethyl-12-(3-nitrophenyl)-3,4,7,8,9,10-hexahydro-2H-chromeno[2,3-b]quinolin-1(12H)-one (**3i**). White solid; mp 290–292 °C [lit:¹⁹ 293 °C]; R_f 0.46 (40% EtOAc/petroleum ether); IR ν_{max} (KBr): 3424, 3387, 2935, 1637, 1564, 1535, 1421, 1370, 1232, 1032, 580 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 1.08 (s, 3H, -CH₃), 1.24 (s, 3H, -CH₃), 1.82 (m, 4H, -CH₂), 2.23 (m, 4H, -CH₂), 2.57 (m, 2H, -CH₂), 2.77 (m, 2H, -CH₂), 4.07 (br s, 2H, D₂O exchangeable, -NH₂), 4.98 (s, 1H, -CH), 7.41 (t, 1H, *J*=7.7 Hz, -Ar-H), 7.70 (d, 1H, *J*=7.7 Hz, -Ar-H), 8.02 (d, 1H, *J*=8.4 Hz, -Ar-H), 8.18 (s, 1H, -Ar-H); ¹³C NMR (75 MHz, CDCl₃) δ : 21.2, 21.4, 21.9, 26.1, 28.0, 31.1, 32.7, 40.2, 43.0, 49.5, 97.2, 112.1, 113.0, 120.5, 122.2, 144.9, 146.8, 150.5, 152.5, 153.0, 164.3, 195.2; MS (ESI LCQ-MS): *m/z* 420 [M+1]⁺. Anal. Calcd for C₂₄H₂₅N₃O₄: C, 68.72; H, 6.01; N, 10.02%. Found: C, 69.01; H, 6.04; N, 10.09%.

4.2.10. 11-Amino-12-(2,4-dichlorophenyl)-3,3-dimethyl-3,4,7,8,9,10hexahydro-2H-chromeno[2,3-b]quinolin-1(12H)-one (**3***j*). Pale yellow solid; mp 282–284 °C; R_f 0.49 (40% EtOAc/petroleum ether); IR ν_{max} (KBr): 3404, 3348, 2933, 1649, 1369, 1230, 1168, 1039, 852, 567 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 0.97 (s, 3H, -CH₃), 1.09 (s, 3H, -CH₃), 1.78 (m, 4H, -CH₂), 2.32 (m, 4H, -CH₂), 2.56 (m, 2H, -CH₂), 2.72 (m, 2H, -CH₂), 4.38 (s, 2H, D₂O exchangeable, -NH₂), 5.19 (s, 1H, -CH), 7.12 (d, 2H, *J*=8.4 Hz, -Ar-H), 7.31 (s, 1H, -Ar-H); ¹³C NMR (75 MHz, CDCl₃) δ : 18.4, 21.8, 28.4, 32.3, 34.7, 47.1, 54.3, 61.2, 111.8, 113.4, 115.4, 126.8, 130.1, 133.1, 136.4, 136.7, 150.1, 154.9, 160.2, 164.8, 198.3; MS (ESI LCQ-MS): *m/z* 443 [M+1]⁺. Anal. Calcd for C₂₄H₂₄N₂O₂Cl₂: C, 65.02; H, 5.46; N, 6.32%. Found: C, 65.28; H, 5.49; N, 6.31%.

4.2.11. 10-Amino-8-(4-chlorophenyl)-6-methyl-1,2,3,8-tetrahydro-5oxa-4-aza-cyclopenta[b]naphthacene-7-carboxylic acid methyl ester (**3k**). Off white solid; mp 182–184 °C; R_f 0.59 (40% EtOAc/petroleum ether); IR ν_{max} (KBr): 3461, 3336, 2956, 1714, 1559, 1446, 1208, 1096, 820 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 1.72 (s, 3H, -CH₃), 1.96 (m, 2H, -CH₂), 2.58 (m, 2H, -CH₂), 2.93 (m, 2H, -CH₂), 3.86 (s, 3H, -OCH₃), 4.13 (br s, 2H, D₂O exchangeable, -NH₂), 4.89 (s, 1H, -CH), 6.97 (d, 2H, *J*=7.7 Hz, -Ar-H), 7.15 (d, 2H, *J*=7.7 Hz, -Ar-H); ¹³C NMR (75 MHz, CDCl₃) δ : 18.4, 24.2, 24.8, 34.7, 52.6, 96.4, 104.7, 105.8, 114.2, 130.1, 132.3, 136.3, 152.6, 154.8, 155.7, 163.9, 165.1; MS (ESI LCQ-MS): *m/z* 371 [M+1]⁺. Anal. Calcd for C₂₀H₁₉N₂O₃Cl: C, 64.78; H, 5.16; N, 7.55%. Found: C, 64.93; H, 5.18; N, 7.49%.

4.2.12. 11-Amino-3,3-dimethyl-12-(4-nitrophenyl)-3,4,7,8,9,10-hexa-hydro-2H-chromeno[2,3-b]quinolin-1(12H)-one (**3l**). Off white solid; mp: 322–324 °C [lit:¹⁹ 323–325 °C]; R_f 0.49 (40% EtOAc/petroleum ether); IR v_{max} (KBr): 3402, 3232, 2927, 1637, 1517, 1370, 1370, 1346, 1228, 1205, 1032, 802, 579 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 0.92 (s, 3H, –CH₃), 1.07 (s, 3H, –CH₃), 1.80 (m, 4H, –CH₂), 2.13 (m, 4H, –CH₂), 2.54 (m, 2H, –CH₂), 2.74 (m, 2H, –CH₂), 4.10 (br s, 2H, D₂O exchangeable, –NH₂), 4.98 (s, 1H, –CH), 7.50 (d, 2H, *J*=8.4 Hz, –Ar–H), 8.08 (d, 2H, *J*=8.4 Hz, –Ar–H); ¹³C NMR (75 MHz, CDCl₃) δ : 18.6, 22.3, 22.5, 23.0, 32.5, 34.6, 98.6, 114.7, 126.3, 127.2, 134.1, 136.2, 152.3, 154.4, 156.8, 162.0; MS (ESI LCQ-MS): *m/z* 420 [M+1]⁺. Anal. Calcd for C₂₄H₂₅N₃O₄: C, 68.72; H, 6.01; N, 10.02%. Found: C, 68.99; H, 5.98; N, 10.09%.

4.2.13. 14-(3-Nitrophenyl)-9,11,12,14-tetrahydro-10H-7-oxa-8-azabenzo[a]-naphthacen-13-ylamine (**5a**). Pale yellow solid; mp 284– 286 °C [lit:²⁰ 287–289 °C]; R_f 0.53 (40% EtOAc/petroleum ether); IR ν_{max} (KBr): 3456, 3324, 2928, 1654, 1535, 1349, 1233, 1082, 816, 680 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 1.80 (m, 4H, –CH₂), 2.34 (m, 2H, –CH₂), 2.75 (m, 2H, –CH₂), 4.11 (br s, 2H, D₂O exchangeable, –NH₂), 5.32 (s, 1H, –CH), 7.81 (m, 5H, –Ar–H), 8.01 (m, 4H, –Ar–H), 8.44 (s, 1H, –Ar–H); ¹³C NMR (125 MHz, CDCl₃) δ : 22.4, 22.8, 26.4, 32.1, 34.8, 98.8, 105.4, 113.4, 115.2, 117.5, 121.5, 122.4, 122.8, 123.9, 126.6, 132.1, 133.2, 134.5, 142.3, 151.0, 154.5, 159.9, 163.7; MS (ESI LCQ-MS): m/z 424 [M+1]⁺. Anal. Calcd for C₂₆H₂₁N₃O₃: C, 73.74; H, 5.00; N, 9.92%. Found: C, 73.99; H, 5.04; N, 9.98%.

4.2.14. 13-(4-Chlorophenyl)-9,10,11,13-tetrahydro-7-oxa-8-aza-benzo-[a]-cyclopenta[l]anthracene-12-ylamine (**5b**). Off white solid; mp 214–216 °C; R_f 0.61 (40% EtOAc/petroleum ether); IR ν_{max} (KBr): 3431, 3372, 2936, 1601, 1451, 1209, 1086, 823 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 1.96 (m, 2H, –CH₂), 2.48 (m, 2H, –CH₂), 2.68 (m, 2H, –CH₂), 4.21 (m, 2H, D₂O exchangeable, –NH₂), 5.41 (s, 1H, –CH), 7.10 (m, 4H, –Ar–H), 7.42 (m, 6H, –Ar–H); ¹³C NMR (125 MHz, CDCl₃) δ : 22.1, 22.9, 25.7, 34.6, 97.3, 106.4, 114.9, 117.4, 119.2, 121.8, 122.3, 126.3, 127.4, 127.8, 128.3, 129.4, 130.2, 134.2, 141.8, 153.8, 157.8, 162.4, 164.3; MS (ESI LCQ-MS): m/z 399 [M+1]⁺. Anal. Calcd for C₂₅H₁₉N₂OCl: C, 75.28; H, 4.80; N, 7.02%. Found: C, 75.53; H, 4.84; N, 7.05%.

4.2.15. 13-(4-Nitrophenyl)-9,10,11,13-tetrahydro-7-oxa-8-aza-benzo-[a]-cyclopenta[l]anthracene-12-ylamine (**5c**). Pale brown solid; mp 202–204 °C; R_f 0.57 (40% EtOAc/petroleum ether); IR ν_{max} (KBr): 3451, 3341, 2940, 1611, 1534, 1358, 1440, 1198, 1091, 821 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 1.86 (m, 2H, –CH₂), 2.48 (m, 2H, –CH₂), 2.86 (m, 2H, –CH₂), 4.31 (br s, 2H, D₂O exchangeable, –NH₂), 5.36 (s, 1H, –CH), 6.86 (d, 1H, *J*=8.4 Hz, –Ar–H), 7.18 (m, 4H, –Ar–H), 7.40 (m, 3H, –Ar–H), 8.16 (d, 2H, *J*=7.7 Hz, –Ar–H); ¹³C NMR (75 MHz, CDCl₃) δ : 23.5, 24.8, 25.3, 34.8, 96.4, 106.8, 115.1, 117.8, 118.3, 122.4, 123.7, 124.2, 125.9, 126.2, 127.4, 129.4, 134.3, 144.9, 152.1, 155.7, 161.0, 164.3; MS (ESI LCQ-MS): *m/z* 410 [M+1]⁺. Anal. Calcd for C₂₅H₁₉N₃O₃: C, 73.34; H, 4.68; N, 10.26%. Found: C, 73.57; H, 4.72; N, 10.31%.

4.2.16. 7-(3-Nitrophenyl)-9,10,11,12-tetrahydro-7H-14-oxa-13-azabenzo[a]naphthacen-8-ylamine (**5d**). Light green solid; mp 154– 156 °C; R_f 0.51 (40% EtOAc/petroleum ether); IR ν_{max} (KBr): 3454, 2930, 1609, 1529, 1380, 1347, 1103, 806, 679 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 1.71 (m, 4H, –CH₂), 2.48 (m, 2H, –CH₂), 2.88 (m, 2H, –CH₂), 4.12 (br s, 2H, D₂O exchangeable, –NH₂), 5.21 (s, 1H, –CH), 7.04 (d, 1H, *J*=7.7 Hz, –Ar–H), 7.41 (m, 5H, –Ar–H), 7.68 (d, 1H, *J*=8.4 Hz, –Ar–H), 7.90 (s, 1H, –Ar–H), 8.02 (m, 2H, –Ar–H); ¹³C NMR (75 MHz, CDCl₃) δ : 22.2, 22.5, 23.2, 32.0, 34.8, 97.4, 105.4, 115.2, 115.8, 116.1, 121.2, 123.6, 124.8, 126.4, 127.4, 129.2, 132.3, 134.7, 144.7, 148.9, 150.4, 156.4, 160.9, 164.9; MS (ESI LCQ-MS): *m/z* 424 [M+1]⁺. Anal. Calcd for C₂₆H₂₁N₃O₃: C, 73.74; H, 5.00; N, 9.92%. Found: C, 73.98; H, 5.06; N, 9.97%.

4.2.17. 7-(2,4-Dichlorophenyl)-9,10,11,12-tetrahydro-7H-14-oxa-13aza-benzo[a]naphthacen-8-ylamine (**5e**). Pale brown solid; mp 160–162 °C; R_f 0.37 (40% EtOAc/petroleum ether); IR ν_{max} (KBr): 3483, 3397, 3043, 1628, 1580, 1457, 1380, 1109, 866, 809 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 1.72 (m, 4H, –CH₂), 2.26 (m, 2H, –CH₂), 2.83 (m, 2H, –CH₂), 4.19 (s, 2H, D₂O exchangeable, –NH₂), 5.78 (s, 1H, –CH), 7.04 (d, 1H, J=8.4 Hz, –Ar–H), 7.11 (d, 1H, J=8.4 Hz, –Ar– H), 7.20 (d, 1H, J=8.4 Hz, –Ar–H), 7.36 (m, 2H, –Ar–H), 7.48 (m, 1H, -Ar-H), 7.73 (d, 1H, J=8.4 Hz, -Ar-H), 8.12 (d, 1H, J=8.4 Hz, -Ar-H), 8.61 (d, 1H, J=8.4 Hz, -Ar-H); ¹³C NMR (125 MHz, CDCl₃) δ : 22.3, 22.8, 29.7, 32.4, 38.2, 99.0, 106.1, 113.7, 114.2, 115.3, 121.3, 122.4, 123.9, 125.6, 126.9, 128.2, 130.1, 132.0, 133.7, 143.4, 147.8, 150.3, 154.2, 160.4, 164.0; MS (ESI LCQ-MS): m/z 447 [M+1]⁺. Anal. Calcd for C₂₆H₂₀N₂OCl₂: C, 69.81; H, 4.51; N, 6.26%. Found: C, 70.13; H, 4.54; N, 6.30%.

Acknowledgements

One of the author, N.P.S. thanks the Council of Scientific and Industrial Research (CSIR), New Delhi for financial assistance.

References and notes

- (a) Ahmad, S. J. Nat. Prod. **1984**, 47, 391; (b) Mitaka, S.; Skaltsounis, A.-L.; Tillequin, F.; Koch, M.; Pusset, J.; Chauviere, G. J. Nat. Prod. **1985**, 48, 772; (c) Ulubelen, A. Phytochemistry **1984**, 23, 2123; (d) Tantivatana, P.; Ruangrungsi, N.; Vaisiroiroj, V.; Lankin, D. C.; Bhacca, N. S.; Borris, R. P.; Cordell, G. A.; Johnson, L. F. J. Org. Chem. **1983**, 48, 268; (e) Munoz, M. A.; torres, R.; Cassels, B. K. J. Nat. Prod. **1982**, 45, 367.
- (a) Faber, K.; Stueckler, H.; Kappe, T. J. Heterocycl. Chem. **1984**, *21*, 1171; (b) Johnson, J. V.; Rauckman, S.; Beccanari, P. D.; Roth, B. J. Med. Chem. **1989**, *32*, 1942; (c) Yamada, N.; Kadowaki, S.; Takahashi, K.; Umeza, K. Biochem. Pharmacol. **1992**, *44*, 1211.
- Kolokythas, G.; Pouli, N.; Marakos, P.; Pratsinis, H.; Kletsas, D. Eur. J. Med. Chem. 2006, 41, 71.
- Azuine, M. A.; Tokuda, H.; Takayasu, J.; Enjyo, F.; Mukainaka, T.; Konoshima, T.; Nishino, H.; Kapadia, G. J. Pharmacol. Res. 2004, 49, 161.
- (a) Srivastava, S. K.; Tripathi, R. P.; Ramachandran, R. J. Biol. Chem. 2005, 280, 30273;
 (b) Brotz-Oesterhelt, H.; Knezevic, I.; Bartel, S.; Lampe, T.; Warnecke-Eberz, U.; Ziegelbauer, K.; Habich, D.; Labischinski, H. J. Biol. Chem. 2003, 278, 39435.
- 6. Toshiro, S.; Noriko, W. Eur. Pat. Appl. EP 647445 A1 19950412, 1995.
- Ito, Y.; Kato, H.; Yasuda, S.; Kato, N.; Iwasaki, N.; Nishino, H.; Takeshita, M. Jpn. Kokai Tokkyo Koho, JP 06107664 A2 19940419, 1994.
- 8. Goto, K.; Yaoka, O.; Oe, T. PCT Int. Appl. WO 8401711 A1 19840510, 1984.
- 9. Maruyama, Y.; Goto, K.; Terasawa, M. Ger. Offen. DE 3010751 19810806, 1981.
- 10. Ukawa, K.; Ishiguro, T.; Kuriki, H.; Nohara, A. Chem. Pharm. Bull. 1985, 33, 4432.
- (a) In Comprehensive Heterocyclic Chemistry; Jones, G., Katritzky, A. R., Ress, C. W., Eds.; Pergamon: New York, NY, 1996; Vol. 5, p 167; (b) Cho, C. S.; Oh, B. H.; Kim, T. J.; Shim, S. C. J. Chem. Soc., Chem. Commun. 2000, 1885; (c) Jiang, B.; Si, Y. C. J. Org. Chem. 2002, 67, 9449; (d) Skraup, H. Chem. Ber. 1880, 13, 2086; (e) Friedländer, P. Ber. 1882, 15, 2572; (f) Mansake, R. H.; Kulka, M. Org. React. 1953, 7, 59; (g) Linderman, R. J.; Kirollos, S. K. Tetrahedron Lett. 1990, 31, 2689; (h) Theclitou, M. E.; Robinson, L. A. Tetrahedron Lett. 2002, 43, 3907.
- (a) Martinez-Grau, A.; Marco, J. Bioorg. Med. Chem. Lett. **1997**, 7, 3165; (b) Li, J. R.; Zhang, L. J.; Yang, X. Q.; Li, Q.; Wang, D.; Wang, C. X.; Shi, D. X.; Zhang, Q. Chin. Chem. Lett. **2008**, 19, 15; (c) Sheldon, R. A. Green Chem. **2005**, 7, 267.
- (a) de los Rios, C.; Marco, J. L.; Carreiras, M. C.; Chinchon, P. M.; Garcia, A. G.; Villarroya, M. Bioorg. Med. Chem. 2002, 10, 2077; (b) Marco, J. L.; de los Rios, C.; Garcia, A. G.; Villarroya, M.; Carreiras, M. C.; Martins, C.; Eleuterio, A.; Morreale, A.; Orozco, M.; Luque, J. Bioorg. Med. Chem. 2004, 12, 2199; (c) Leon, R.; Marco-Contelles, J.; Garcia, A. G.; Villarroya, M. Bioorg. Med. Chem. 2005, 13, 1167; (d) Marco-Contelles, J.; Leon, R.; de los Rios, C.; Garcia, A. G.; Lopez, M. G.; Villarroya, M. Bioorg. Med. Chem. 2006, 14, 8176; (e) Marco, J. L.; de los Rios, C.; Carreiras, M. C.; Banos, J. E.; Badia, A.; Vivas, N. M. Bioorg. Med. Chem. 2001, 9, 727; (f) Marco-Contelles, J.; León, R.; Lopez, M. G.; García, A. G.; Villarroya, M. Eur. J. Med. Chem. 2006, 41, 1464.
- (a) Loh, T. P.; Huang, J. M.; Goh, S. H.; Vittal, J. J. Org. Lett. 2000, 29, 1291; (b) Solvent-Free Organic Synthesis; Tanaka, K., Ed.; Wiley-VCH: Weinheim, 2003.
- (a) Cave, G. W. W.; Raston, C. L.; Scott, J. L. Chem. Commun. 2001, 2159; (b) Tanka, K.; Toda, F. Chem. Rev. 2000, 100, 1025.
- (a) Bez, G.; Gogoi, D. *Tetrahedron Lett.* **2006**, 47, 5155; (b) Tang, L.; Ding, L.; Chang, W.-X.; Li, J. *Tetrahedron Lett.* **2006**, 47, 303; (c) Yoo, C. L.; Fettinger, J. C.; Kurth, M. J. *J. Org. Chem.* **2005**, 70, 6941.
- (a) Selvam, N. P.; Saravanan, C.; Muralidharan, D.; Perumal, P. T. J. Heterocycl. Chem. 2006, 43, 1379; (b) Selvam, N. P.; Perumal, P. T. Tetrahedron 2008, 64, 2972; (c) Selvam, N. P.; Saranya, S.; Perumal, P. T. Can. J. Chem. 2008, 86, 32; (d) Arumugam, P.; Perumal, P. T. Chem. Lett. 2006, 35, 635.
- 18. Kuthan, J. Adv. Heterocycl. Chem. 1995, 62, 20.
- 19. Rafael, G.; Antonio, G.; Marco-Contelles, J. J. Chem. Res. 2006, 8, 536.
- Jiarong, L.; Lijun, Z.; Daxin, S.; Qing, L.; Dong, W.; Chunxia, W.; Qi, Z.; Ling, Z.; Yanqiu, F. Synlett 2008, 233.